specimens from the Kentei and U'suri, representing Sehrenck's "Lugomys hyperboreus, var. cinereo-fuscu," are withnut dates, but the presint series chables me to determine them with contidence as being respectively summer and wimter examples of unc form.

This animal would appear to be not more than sulsipecifirally distinguishable from cinereo-jusca, and as Sohrenck considered that a variety of haperborea I do the same for the present form ; but the intergratation with the 'T'-chaktechi Pika may hereafter prove to lie broken, and the Amur and Manthurian forms to be worthy of specifie separation from the more northern spectes.
15. Capreolus bedfordi, Thos.
\& and two young. Khingan Mis.

LXIII.-On the Regular IIexuctine Spicule of Hexactinellidu. By R. Kheratrack.

The regular hexactine spicule characteristic of Hexectinellid sponges has three axes crossing at right angles throurh a common centre and correspon ling with the axes of the regnh ir erystalline system; but the siliea of which the spicule is composed is isotropic and amosphons. What is the meaning of the form of the regular hexactin*? Is it due to purely organic causes, or is its shape influmed by its mineral characters; or do heth of these tactors comribute? Further, it its form is due to biological canses, how have they fashoned the regular hexactine shape? Before attempting to surgest an answer to these questions I will refer to theories alrealy put forward by Schmize and Minchith.

The typical Hexactinellid sponge is a cup-shaped lamina with a cemral layer of thimble-shaped flagellated chambers snspended between an outer dermal and an inner matrol layer of delicata network. Schulze t was of opinion that the regular hexactine spicule came into existence because it was adapted to support the thimble-shaped Hagellated chambers.

Ninchin \dagger has stated his belief that the spicules arose before the flagellated chambers were formet, that the stateratin preceded the hexactin, and that the symmetry of these two

- I nse the lermactine as an adjective, and nctin as a sub-tantive.
t 'Challe ger' lieport. Hexactinetlida, 15-i, p. SOt.
I "A Speculation on the Phylogeny of the Ifexactinellid Spouges,"

forms resulted from the mineral properties of the silica. Later *, he thought it might be possible, by accepting a modification of Marshall's theory of silicification of circular and longitudinal strands of sarcode (Z. wiss. Zonl. xxvii. p. 116), "to find a phylogenetic explanation for the origin of the rectangular symmetry withont laving recourse to supposed crrstalline structure, for which there is no evidence, in the siliceous material."

My own view is that the shape of the regular hexactin is due to biological canses, that the form arose primarily to support strands of the network and not to uphold flagellated chambers, and that the coincidence of the axes with those of a regular crystalline system is, literally, a coincidence.

Schulze \dagger thinks that there is not sufficient evidence to prove that purely stauractinophoran sponges existed; for the supposed slauractins may be reduced hexactins (apparently as in the antodermalia of the primitive thin-walled Bathydorus fimbriatus, F. E. Sch.), or distal rays of hexactins might have been broken off, or hexactins, though not hitherto observed, nay be present. Again, the fact that autodermal stauractin megascleres are the first spicules to appear in the larva of T'itrolulla, may, as Ijima observes (Contıib. iv. p. 52), be entisely devoid of phylogenetic significance.

Minchin considered that a homocoelous condition must have preceded the heferocolous, and that the inner ray of a hexactin, if present, would inconveniently penetrate an unfolded collar cell layer, that a square-meshed network would form convenient spaces for the first outfoldings of the choanosomal layer, and that, as the flagellated chambers arose, radial rays would he added on to the nodes of the tangential rays, just as quadriradiates arise from triradiates in Calcarea; but this lypothesis would not account for the existence of gastrosomal micro-hexactins.

In recent Hexactinellida the hexactins are found not only in the dermatosome, but also in the gastrosome, where there can be no question of supporting the convex ends of thimbleshaped flagellated chambers, but every need for keeping open the meshes of the trabecular network. Possibly the distinction letween megascleres and micrnscleres first arose when the choanosome was thrown into folds; some of the microhexactins would become macrohexactins, and, later, flexible diactins; but, at first, in a well supported dermal reticulum the menibrana reticularis possibly could take care of itself.

* "Sponge-Spicules," Ergeb. For'schr. Zool. 1909, p. 268.
+ 'T'aldivia ' Hexactinellida, 1904, p. 170.

The characteristic feature of the Hexactinellid sponge. which must have existed lufore stauractine or hexactine spicules arnse, and which probably con litionel tho shape of these spicules, is the dermal* syncytial network.

If purcly stamactine-poners existed, it whs becanse thiz mitwork would he extremely thin at first, and Natme would have the problem of forming a practically-unt, of course, mathematically-two-dimensional scallolding (i. e. stamactine). When in course of time the network grew thicker, a threedimensonal seatfolding would beome necersary.

It has been supposed that the biological comditions, which would account for the existence of the regular hexactine form, do not ocemr, becanse the meshes of the trabecular network are of all shapes. It seems to me that these conditions do actually exist. Nature has a very elusive material to deal with in the case of the fluent and contractile syncytium of the Hexactinellid sponge, and it would be impracticable to construct a scaffolding that would exactly follow the protean form of a syncytial network.

In the Hexactinellid sponge, it is not necessary to look for a perfectly regular network of protoplasmic strands to accomnt for a similarly regular network of supportmg scaffolding ; the protoplasmic strands of syncytum need only loosely drape the supporting rods; they may fill in the sharp comers, torm subsidiary meshes in the cubical comparments, and lastly prot out the walls of the enbicle with span lrils or culd rays. For the support of three-dimensional spaces of a network, the most conomical and efficient scaffolding is the cubical one. The selected sclerite has ben one with six ravs at right angles, giving support in the direction of lengh, breadih, and depth.

Nature, having selected the hexactin, has certainly sterentyped her pattern in a wondertul mamer. It is always a surprise to see the axis-croas persisting in long slender datatine and even in monatine spicules, suels as the dist il pronged knob of root-tuft spicules of Hyalonema. No wonder we are lel to account for such phemomena by calling in the mysterious molecular fores of erystallisation in phace of, or in aid of organic forces acting en musse.

We find, however, that Nature readily adapts her methods to the changing requirement. As I lave already endeavomed to provet, when it becomes a question of supporting concentric lamine of reticulum, the tho tangential ases ensential in a

[^0]three-dimensioned structure are dispensed with, and the onedimensioned prop or standard (amphidisk) is brought into requisition. Although the amphidisk is probably a reduced hexadisk, the axis-cross representing the aborted rays is not in evidence, so completely has the triaxial character been suppressed.

If the coincidence of the primary axes of the spicule with those of the regular system can be accounted for on grounds of selection of a form adapted to maintain the patency of a meshwork, certain cases of coincidence with secondary planes of symmetry are easily explained.

The true microhexactin of Hyalonema divergens, F. E. Sch., and the monoxyhexaster of Bathydorus uncifer are both of approximately the same shape, i. e. with rays meeting at right angles in a common centre, and with curved ends lying in secondary planes of symmetry. In the case of Hyalonema, the spicule is a true microhexactin with axial canals rumning to the very points of the rays; in the monoxy hexaster, the axial canals only extend a short distance from the centre. Along with the monoxy hexasters are hemioxyhexasters with some main rays ending in more than one end ray; and there is no reason to doubt that the monoxyhesasters are reduced from such forms, and that the curved ends are merely deflected spines or end rays. Whatever theory one may adopt concerning the micro-hexactins of Hyalonema, it is difficult, in view of the probable history of the spicules, to believe that the incidence of the ends of the rays of the monoxyhexaster of B. uncifer in secondary planes of symmetry is anything more than the result of the stresses and strains of the strands of contractile meshwork. Similarly, as Schulze has shown, the pointing of the rays of the discoctaster to the angles of a cube simply results from centripetal pressure suppressing the main rays of a hexaster and pressing back the scleroblastic end rays ($2,3,4$ or many) till they fuse with neighbouring rays into secondary main rays; this incidence of axes in lines pointing to angles of a cube is a pure coincidence; frequently "supernumerary thorns" fail to become fused and do not point to the angles of the cube.

Summary. Reasons are given for the belief:
(1) That the regular hexactine spicule was primarily formed in Hexactinellid sponges as being the most economical and efficient \% means for supporting the strands of a syncytial network; for, in the gastrosome at any rate, the microscleres would be useless for upholding the body or

[^1]flagellated chambers, hut most efficiont for the vitally important function of keeping open the meshes of the dermal network:
(2) 'That the geometrical forms of cubes, squares, or lines (hexactins, stanactins, amphidisks) arise in correspondence with the requirements for supporting enbical spaces, surfaces, or conecntric laminac:
(3) That the support of flagellated chambers and of the body as a whole was a later need, and was effeeted by the development of microscleres into parenchymal and auxiliary surface macroscleres:
(t) That the identity of axes of the regular hexactin with those of the regular cerstalline system is a coincidence, the real determining factor of the shape being a biologieal one : the axes of a geometrical system are pure abstractions. The conclete organic filament of the regular hexactin round which alternating layers of spiculin and silex are formed is nothing more than a model of those abstractions. (It is not implied, however, that the cylindrical shape of the axial tubes is to be regarded as an argument against the crystal theory; for crystals may have curved surfaces.)

LXIV.-Descrintions of Oriental Capsidæ.

 By W. L. Distant.[Continued from p. 4.5.]

Hyalopeplus clavatus, sp. n.

Head, pronotun, scutcllum, and corium bronzy ochraccous; head with three longitudinal black lines, the lateral ones converging anteriorly; antemme with the basal joint bronzy ochraceons, with a more or less distinct piceous line beneath, sccond joint black, with its base ochraccons (remaining joints mutilated in typical specimens); pronotal collar with the margins and threc longitudinal lines black, the central line more prominent, posterior pronotal margin and the posterior angles black; clavus with the inner and outer margins and the suture black; corium with the costal marginal area paler and bordered on cach side with black, veins piccous; mem-

[^2]
[^0]: * Dermal, as contrasted with gastral, and includine dermatosome and gastrozome.
 t Ann. Mng. Š. H. lMy, (viii.) rol, ir. p. IT.

[^1]: * The human architect, also, has found that the regular hexactin is the most conrenient form of spicule for constructing his dictronine

[^2]: scuffoldings. Ife resorts to the method of splicing with rope his radial and tangential axes (standards, putlogs, and ledeers), because, when separated, they are easier to transport in bundles.

